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Many economic sectors rely on marine ecosystem services, and holistic management is necessary to evaluate trade-offs between sectors and
facilitate sustainable use. Integrated ecosystem assessments (IEA) integrate system components so that managers can evaluate pathways to
achieve desired goals. Indicators are a central element of IEAs and capture the status and trend of individual components and should be sensitive
to changes in the system; however, most indicators are aggregated over space and time as annual values, potentially leading to incomplete
or inaccurate inferences about system change. Here, we demonstrate the utility of spatially and temporally explicit ecological indicators by
fitting multivariate spatio-temporal models to survey data from the northeast US Shelf Ecosystem, encompassing three distinct ecoregions:
Georges Bank, Gulf of Maine, and mid-Atlantic Bight. We evaluate three case studies to explore how these models can help assess ecosystem
performance relative to management objectives, such as to: (1) identify dominant modes of variation in zooplankton communities; (2) quantify
components of system stability; and (3) assess the density-dependent condition of groundfish over time. Collectively, these three examples
demonstrate multiple interesting processes, but particularly highlight the rapid zooplankton changes and associated changes in benthivore
condition and stability in the Gulf of Maine. Attributing changes in ecosystem indicators to localized processes is difficult using conventional
“regionally aggregated” indicators, so this example highlights the benefits of spatio-temporal methods for integrated ecosystem analysis in this
and other regions.
Keywords: ecosystem indicators, integrated ecosystem assessment, spatial indicators, vector autoregressive spatio-temporal (VAST).
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Introduction

Marine ecosystems provide a myriad of services essential to
human welfare, including provisioning (e.g. seafood), regu-
lating (e.g. of climate, nutrient cycling), and cultural (e.g.
recreation, spiritual value) goods and services. Concurrently,
these ecosystems are increasingly exposed to a wide range
of environmental and anthropogenic stressors, including cli-
mate change, habitat alterations, and fishing (Halpern et al.,
2012; Link and Watson, 2019). Many sectors overlap in ocean
ecosystems, including energy production, shipping, commer-
cial fishing, and recreational activities, and the spatial foot-
print and impact of these activities must be reconciled (NOAA,
2018).

Holistic ecosystem-based management approaches (EBM)
attempt to integrate economic, social, biophysical, and cul-
tural factors in the decision to more sustainably manage ocean
resources (Slocombe, 1993; Link, 2002; Pikitch et al., 2004;
Arkema et al., 2006; Curtin and Prellezo, 2010; Schultz et
al., 2012). The National Oceanic and Atmospheric Admin-
istration’s (NOAA’s) Integrated Ecosystem Assessment (IEA)
is an example of EBM in which multiple components of an
ecosystem are integrated into the decision-making process
to articulate objectives and monitor progress towards goals
(Levin et al., 2008). In the northeast United States, the IEA
programme produces annual reports that synthesize ecosys-
tem information to allow fishery managers to better meet
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shery management objectives (NEFSC, 2022). Ecosystem-
evel management objectives are largely derived from legal
andates (e.g. the Magnuson-Stevens Fishery Conservation

nd Management Act and the Marine Mammal Protection
ct) and include objectives like stability and seafood pro-
uction (see Table 1 in NEFSC, 2022). Indicators that cap-
ure the status and trend of key ecosystem components are a
ore component of the IEA approach and provide the basis
or the assessment of ecosystem state and attributes of inter-
st (Levin et al., 2008; Levin et al., 2009; deReynier et al.,
010).
Marine ecosystems are complex, and a suite of represen-

ative and responsive indicators can be used to communicate
hanges in resources or ecosystem attributes relative to desired
oals and objectives (Rice and Rochet, 2005). Accordingly,
any indicators are routinely used in IEAs, such as physical

ndices, abundance of species or functional groups, or groups
f species, sizes of individuals, the size structure of the commu-
ity, biomass ratios, indices of diversity, and various metrics
f ecosystem function derived from models (Link, 2005; Liv-
ngston et al., 2005; Tam et al., 2017). While there are many
otential indicators, the value of each depends on its observ-
bility, reliability, and responsiveness to variation in processes
hat contribute to performance relative to management objec-
ives (NEFSC, 2022; for a discussion on indicator properties,
ee Rice and Rochet, 2005).
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Table 1. Species included in joint-dynamic species distribution model (JDSDM) to evaluate portfolio effects across feeding guilds in the northeast U.S.
shelf ecosystem.

Feeding guild Selected species Aggregated species

Piscivores Summer flounder (Paralichthys dentatus) Acadian redfish
Atlantic cod (Gadus morhua) Atlantic halibut
Spiny dogfish (Squalus acanthias) Bluefish
Goosefish (Lophius americanus) Clearnose skate
Winter skate (Leucoraja ocellata) Fourspot flounder

John dory
Little skate
Longfin squid
Northern shortfin squid
Offshore hake
Pollock
Red hake
Sea raven
Silver hake
Smooth skate
Summer flounder
Striped bass
Thorny skate
Weakfish
White hake
Windowpane

Planktivores Atlantic herring (Clupea harengus) Alewife
Butterfish (Peprilus triacanthus) American shad
Atlantic mackerel (Scomber scombrus) Blackbelly rosefish

Blueback herring
Cusk
Longhorn sculpin
Lumpfish
Menhaden
Northern sandlance
Northern searobin
Sculpin, unclassified

Benthivores Haddock (Melanogrammus aeglefinus) American plaice
Winter flounder (Pseudopleuronectes americanus) American lobster
Yellowtail flounder (Pleuronectes ferruginea) Atlantic wolffish
Black sea bass (Centropristis striata) Barndoor skate

Blue crab
Cancer crab, unclassified
Chain dogfish
Cunner
Cuttlefish, unclassified
Jonah crab
Lady crab
Ocean pout
Octopod, unclassified
Red deepsea crab
Rosette skate
Scup
Smooth dogfish
Spider crab, unclassified
Striped searobin
Squid, unclassified
Tautog
Tilefish
Witch flounder

For each feeding guild modelled, species that expert opinion selected as representative of the guild were designated as separate categories, and all other species
were aggregated into the last category.
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Effectively monitoring indicators depends on adequate
nd reliable data collected and analysed at relevant spatio-
emporal scales to make well-grounded inferences on ecosys-
em status (Heim et al., 2021). Interpretations of many other-
ise useful indicators may suffer from poor observation, e.g.

rom uneven, inconsistent, or opportunistic sampling; mea-
urements occurring at too small or too large of a spatial scale
o represent a management jurisdiction; mismatches between
cale of measurements and the scale of the process being mon-
tored; or spatial and temporal correlations in unexplained
esiduals that are not modelled or otherwise communicated
Rice and Rochet, 2005; Heim et al., 2021). For any ecosys-
em, our understanding will depend both on the spatial and
emporal scales at which dominant patterns of heterogene-
ty are expressed and on the rate at which correlations decay
ith distance and time (Stein et al., 2001). For living marine
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resources, habitat characteristics, environmental and anthro-
pogenic stressors, and biotic interactions vary over space and
time, and these changes will affect their distribution and dy-
namics. For example, Alaska pollock exhibits spatial variation
in size, weight, and diet in their summer distribution in the
eastern Bering Sea (Grüss et al., 2020). As a result, develop-
ing indicators for individual subareas could misrepresent pat-
terns occurring throughout the managed stock. In addition,
climate-driven shifts in spatial distribution towards the north-
ern Bering Sea will result in predictable changes in diet and de-
mographic rates that are relevant to the ecology of that popu-
lation. Accounting for changing spatio-temporal patterns will
enable a better understanding of the status of marine species.

Observing the spatial and temporal dynamics of indica-
tors is fundamental to managing shifts in ecosystem state
(Clements and Ozgul, 2018). However, many ecosystem in-
dicators are aggregated over space into a single temporal in-
dex. Even for multidecadal and ecosystem-wide surveys in-
tegral to many monitoring programmes, scientific communi-
cations typically report only regional time series of aggre-
gate biomass (NEFSC, 2022). Spatial indicators remain un-
derdeveloped, as accessible tools to analyse large dimensional
datasets have only recently become available for researchers
(e.g. INLA, Rue et al., 2009; Lindgren et al., 2011; ; VAST,
Thorson, 2019; TMB, Kristensen et al., 2016). These recent
advances in computing and spatio-temporal modelling allow
researchers to estimate variation across space and over time
for multivariate ecosystem variables (representing numerical
abundance and/or biological condition), thereby developing
more informative and effective indicators of ecosystem status.
Inference from spatially explicit models will enable more ef-
fective management and reduce the potential for suboptimal
or incorrect management decision-making.

Climate change, and other large-scale disturbances, affect
all biological levels, either directly (e.g. by affecting physio-
logical thresholds) and/or indirectly (e.g. by modifying food
resources), resulting in spatio-temporal changes in the density
of living marine resources such as fish and plankton. Spatio-
temporal models are increasingly capable of providing useful
input to assessments in an effort to understand these dynam-
ics to implement effective management strategies. Our aim is
to highlight examples of management objectives and associ-
ated indicators that could be evaluated with spatio-temporal
analyses, including:

(1) Ecosystem stability: Dominant modes of variation in
zooplankton abundance may be used as an indicator of
trophic structure, physical ocean conditions, early warning for
regime shifts, and feeding potential for assessments, due to
their sensitivity to environmental change and integrative role
as a link between trophic levels (Litzow and Mueter, 2014;
Litzow and Hunsicker, 2016).

(2) Fish community stability: Similarly, feeding guild
biomass stability has been proposed as an indicator of ecosys-
tem state, particularly as an early warning indicator (Gar-
rison and Link, 2000). Variation in community abundance
may be reduced through asynchronous fluctuations in popu-
lation densities among community members that serve similar
ecosystem functions. This phenomenon is called a portfolio ef-
fect and may mitigate the impact of variable resource densities
on stakeholders (Sullaway et al., 2021).

(3) Fish productivity: Physiological body condition is an
important indicator of population productivity (Eero et al.,
2015) and is relevant to EBM through both ecosystem func-
ioning and fisheries yield as a potential reference point, but is
ighly unlikely to trend uniformly across a species’ range. So
ggregating calculations over space will mask processes driv-
ng changes in condition, e.g. areas where habitat suitability
s declining.

Here, we demonstrate the utility of spatio-temporal mod-
ls to evaluate these potential indicators relevant to IEAs used
or EBM by analysing long-term zooplankton and fish com-
unity data across the northeast US shelf large marine ecosys-

em (NES).

ethods

tudy area

he NES is a highly productive region that encompasses an
rea of ∼260000 km2 from Cape Hatteras in the south to
he Gulf of Maine in the north. The NES supports a num-
er of important economic sectors, including commercial and
ecreational fishing, offshore energy development, and ship-
ing. Numerous environmental drivers contribute to struc-
ural changes throughout the system (NEFSC, 2009). Ecosys-
em status and trends are regularly monitored and evaluated
elative to fisheries management objectives (NEFSC, 2022).

The NES can be divided into four ecological production
nits (EPUs)—the Gulf of Maine (GOM), Georges Bank (GB),
he Mid-Atlantic Bight (MAB), and the Scotian Shelf—that
lign on a southwest-northeast axis up the northeastern US
oastline (Lucey and Fogarty, 2013; Figure 1). Due to varia-
ion in data availability and survey efforts, in the following
nalysis we focus on GOM, GB, and the MAB.

ata collection

he Northeast Fisheries Science Center (NEFSC) of the Na-
ional Marine Fisheries Service (NMFS) has a longstanding
onitoring programme covering most of the northeast US

ontinental shelf (Brodziak and Link, 2002). Data used in this
tudy were compiled from NEFSC surveys that monitor trends
n abundance and distribution of marine species, and subse-
uently corrected for vessel effects (Miller et al., 2010).

ooplankton community data

he NEFSC Ecosystem Monitoring (EcoMon) sampling pro-
ocol collects hydrographic and tow data using a random-
zed spatial sampling technique that samples ∼30 stations
er EPU per two-month period (Figure 1). During these sur-
eys, plankton are collected using a bongo net (333 μm mesh)
owed obliquely from 200 m (or near the bottom in shallower
epths) to the surface (Kane 2007, 2011).
Zooplankton abundance data used in this analysis in-

ludes samples limited to 2000–2017 to ensure adequate
ata coverage. Samples taken prior to 2000 were subject to

ess consistent sampling protocols. We filtered this dataset to
ve abundant copepod taxa considered ecologically relevant
n previous analyses, discussions with experts, and ecosys-
em reports: Calanus finmarchicus, Centropages typicus, Cen-
ropages hamatus, Temora longicornus, and Oithona spp.,
ereafter referred to as cfin, ctyp, cham, tlong, and oith, re-
pectively (Morse et al., 2017, NEFSC, 2021). To control for
he substantial variation in zooplankton abundance among
easons, this analysis was limited to samples taken in the
pring (February–April, Morse et al., 2017).
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Figure 1. Data from two monitoring efforts in the Northeast Shelf Large Marine Ecosystem are used in this analysis. Dot colour represents the year that
location was surveyed in the GOM, on the GB, and in the MAB ecoregions. Left panel: locations of bottom trawl surveys conducted in the fall from 1963
to 2019. Right panel: ecosystem monitoring surveys conducted springs of 2000–2017.
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ish community data

he NEFSC has been conducting standardized bottom trawl
urveys in the fall since 1963 (Brodziak and Link, 2002). This
cientific monitoring programme has sampled 350–400 sta-
ions every spring and fall from Cape Hatteras (North Car-
lina, USA) to Nova Scotia (Canada) using a random stratified
esign (Figure 1).
Weight and length of fish and invertebrates were measured

t randomly sampled stations within each depth-region stra-
um since 1992. These data were used to estimate popula-
ion density-weighted average condition, “condition” being
efined as the relative weight of an individual fish given its
ody length (i.e. Le Cren’s condition factor; Le Cren, 1951),
escribed in more detail in the statistical analysis below (Thor-
on, 2015).

tatistical analysis

e use the same Vector Autoregressive Spatio-Temporal
VAST) modelling platform to maintain consistency across
hese three applications (Thorson and Barnett, 2017; Thor-
on, 2019). VAST implements a delta-generalized linear mixed
odel including two linear predictors, where these linear pre-
ictors are then transformed using inverse-link functions to
redict the probability that measurement bi for sample i is
ero, Pr ( bi = 0), as well as the expected value for a nonzero
easurement, E (bi|bi〉0). Each linear predictor includes the

dditive effect of several components:
(1) Temporal main effect (“intercept”) that typically varies

or every variable ci and year ti;
(2) Spatial main effect (“spatial component”) that repre-

ents the average spatial distribution for a given variable ci;
(3) Interaction of space and time (“spatio-temporal compo-

ent”) that represents variation in spatial distribution among
odelled times ti;
(4) Density covariates, representing the impact on predicted

ocal densities of either local environmental conditions or a
patially varying response to regional conditions, where the
atter represent “ecological teleconnections”;

(5) Catchability covariates, representing the impact of en-
ironmental or sampling conditions on expected responses,
ut are not reflective of local densities and therefore are “par-
ialled out”prior to predicting densities across space and time.

Various applications include estimating or dropping these
omponents.

Spatial (#2), spatio-temporal (#3), and spatially varying re-
ponses to covariates (#4–5) involve estimating latent vari-
bles that vary spatially. For computational efficiency, we
pecify a Gaussian Markov random field (GMRF) for these
patial variables, and each GMRF isthen treated as a random
ffect during parameter estimation within the R statistical en-
ironment (R Core Team, 2020). These and other random ef-
ects are integrated across when calculating the likelihood of
xed effects, and we use maximum likelihood implemented
sing Template Model Builder (Kristensen et al., 2016) to es-
imate fixed effects parameters. We specifically estimate the
alue of GMRFs at a fixed number of “knots”, where knots
re distributed evenly across space as vertices of a triangulated
esh that covers the spatial domain of interest (Thorson et al.,
021). The value of a GMRF at a given location is then cal-
ulated using bilinear interpolation based on its value at the
hree vertices surrounding it within this mesh, where the bi-
inear interpolation is accomplished using projection matrices
omputed by R-INLA (Rue et al., 2009; Lindgren et al., 2011;
indgren, 2012).
Importantly, all five components included in each linear pre-

ictor can be implemented either for univariate (e.g. single-
pecies) or multivariate (multispecies and/or multimodal) con-
exts. For example, to estimate spatial variation w1(s, c) for
ach location s and category c for the first linear predictor, we
efine a factor-model decomposition:

w1 (s, c) =
nw1∑

f=1

Lw1

(
c, f

)
w1

(
s, f

)
.
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Where w1(s, f ) is the estimate of spatial variation for each
factor f and Lw1 is a loadings matrix that represents the esti-
mated association of each category (e.g. species) c with each
estimated factor f . The loadings matrix then represents co-
variation among categories, where covariance is calculated as
the loading matrix times its transpose. For identifiability, we
specify that the loading matrix is lower-triangle. In the fol-
lowing, we sometimes rotate the loadings matrix and factors
using a principal components analysis (PCA) rotation to im-
prove interpretability; this rotation ensures that the first factor
explains as much variation as possible and therefore summa-
rizes dominant spatio-temporal patterns in model residuals.

We note that the model defines a predicted density at
the location and time for each sample, and also a predicted
density at a set of “extrapolation-grid” locations. Summing
across these extrapolation-grid density estimates then yields
an area-expanded calculation of the total across a speci-
fied spatial domain, and can also be used to visualize the
model results. Further details can be found in the VAST
User Manual (https://github.com/James-Thorson-NOAA/VA
ST/tree/main/manual). For the following analyses, we use
VAST release version 3.7.0 and R version 4.0.1 (R Core Team,
2020).

Ecosystem stability: dominant modes of
zooplankton community dynamics

Empirical orthogonal functions (EOFs) are in the same multi-
variate data-reduction family as principal component analysis
(PCA) and factor analysis (FA), where the variability in multi-
variate data consisting of replicated spatial measurements of
one or more variable(s) over time is reduced to a small num-
ber of dominant temporal axes and spatial response maps that
explain a large portion of the variance in the original pro-
cess (Lorenz, 1956). While EOFs have almost exclusively been
used to analyse modes of spatio-temporal variability in phys-
ical climate data such as sea surface temperature or pressure
(Hurrell et al., 2003), recently Thorson et al. (2020) general-
ized the EOF analysis to fit noisy and zero-inflated samples of
biomass/abundance for multiple species simultaneously in a
spatio-temporal distribution model. In this configuration, in-
dices of variation and associated spatial maps could represent
ecological community dynamics while accounting for varia-
tion due to space and time. These axes can be rotated to allow
interpretation similar to PCA’s principal components, where
the first axis explains the most variation, the second axis the
second most, and so on. Here, we use this statistical general-
ization of the EOF to identify axes of variability in community
zooplankton data in the NES using VAST.

EOFs ordinate on years, providing an annual index for
modes of spatio-temporal variability as well as spatial maps
for each species depicting the deviation in abundance associ-
ated with a positive mode value. The EOF uses a Poisson-link
delta model (Thorson et al., 2020), where encounter prob-
ability is the complementary log-log link of number density
and the expected abundance of a given species is proportional
to their number density at a specific location (knots). Num-
ber density is modelled as a function of intercepts for each
species and year (to isolate spatio-temporal shifts rather than
abundance) and the net effect of temporal indices and their
species-specific spatial patterns. We fit an EOF with two fac-
tors (i.e. indices, spatial and spatio-temporal variation) over
100 knots for each EPU separately, as zooplankton dynam-
cs are expected to differ significantly in each EPU (Morse et
l., 2017). These two factors are zero-summed such that the
patial component (omega) represents the distribution in an
average” year.

ish community stability: portfolio effects

o estimate feeding guild biomass stability, we calculate a
easure of the strength of the portfolio effects arising from

synchronous biomass dynamics among species and locations
n each guild over time. We estimated density for multiple
pecies in each guild using a joint dynamic species distribu-
ion model (JDSDM, Thorson et al., 2016) that simultane-
usly analyses the correlated distribution of multiple species
hile incorporating spatio-temporal variation. JDSDM mod-

ls have been commonly implemented for species ordination,
or example, demonstrating that the distributions of species of
he same genus are more highly correlated than for species of
iffering genera (Thorson et al., 2016). The JDSDM predicts
ensity (biomass per area) for each year, location, and species.
Portfolio effects (PE) measure the degree to which the vari-

nce over time in one ecosystem component is decreased
y asynchronous variation in different components of an
cosystem (Schindler et al., 2015). Here, PE were calculated
ith JDSDM-estimated density as one minus a standardized
oreau measure of synchrony (Loreau and Manzacort, 2008),
ollowing Thorson et al. (2018). For our purposes, the Loreau
etric is calculated as the ratio of observed variance in aggre-

ate biomass (biomass summed across years for a given species
nd location), and the maximum possible variance for aggre-
ate biomass that would arise if all components were perfectly
orrelated (the sum of the variances across sites and species).

PE = 1 − Var
(∑

b∗)
∑

Var(b∗)
.

Where Var(
∑

b∗)/
∑

Var(b∗) is the measure of synchrony,

∗ is the biomass for a given species, location, and time. This
etric can be calculated locally (i.e. calculating variance for

ach location), or regionally (by summing across locations,
nd then calculating variance), where visualizing local port-
olio effects can show spatial patterns that underlie regional
ortfolio effects. The numerator is the variance across years
f biomass summed across sites and species, and the denom-
nator is the sum of variances across sites and species. Then,
E equals 1 whenever the variance of aggregate biomass (the
umerator) is zero and is 0 whenever aggregate variance (the
umerator) is equal to its theoretical maximum (the denomi-
ator). The variance of aggregate biomass is itself a nonlinear
unction of the correlation in log density between species as
ell as other model parameters. So, our measure of PE ranges

rom 0 (no PE) to 1 (strongest possible PE), calculated using
moving window of 10 years, which results in 47 total cal-

ulations that cover the time series from 1963 to 2019. For a
ore detailed discussion on JDSDMs and calculation of port-

olio effects, see Thorson et al. (2018).
We implemented this process separately for three feeding

uilds (Garrison and Link, 2000), piscivores, planktivores,
nd benthivores, using the fall NEFSC bottom trawl survey
ata from 1963 to 2019. For each guild, the JDSDM was fit
o sampling data of 3–5 ecologically relevant species deter-
ined by experts, as well as an additional “other” group de-
ned as the aggregated data from all other sampled species

https://github.com/James-Thorson-NOAA/VAST/tree/main/manual
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n that guild (Table 1), where Thorson et al. (2020) confirm
hat changing this number of species typically has little impact
nce dominant species are included. The JDSDMs estimated
ensity for each species at 200 knots across the NES for two
actors (spatial and spatio-temporal variation). Unlike other
ections of this manuscript, we did not use bilinear interpo-
ation to project the GMRFs to more detail due to compu-
ational constraints. Because spatial densities are known to
ovary with bathymetry for many species of fish, we included
quadratic effect of bottom depth (i.e. survey station depth)

s a density covariate, where this quadratic effect allows for a
ome-shaped depth-response curve.

ish productivity: condition of groundfish

ish condition measures the bioenergetic status for individual
sh beyond what is measured by size or age. A common mea-
ure of fish condition is the relative weight of an individual
sh given its body length, which captures tissue accumulation
fat fish are heavier for a given size) and composition (mus-
le is heavier for a given animal volume), and stomach con-
ents (where fish are weighted without explicitly removing the
tomach) (Bolger and Connolly, 1989; Wuenshel et al., 2019).
his morphometric condition index is an integrated measure
f physiology that accounts for fish behaviour and life history
s well as environmental and species interactions. One of the
ost frequently employed condition indices is Le Cren’s rela-

ive condition factor (Le Cren, 1951), which defines condition
s the residuals of an allometric length–weight relationship.
horson (2015) developed the first spatio-temporal model es-

imating spatio-temporal changes in fish condition proxied
y the Le Cren condition factor, and Gruss et al. (2020) ex-
ended Thorson’s approach to simultaneously estimate spatio-
emporal variation in numerical density and condition (inter-
reting the correlations between the two as “apparent density
ependence”).
Here, we use this condition-and-density model in VAST to

ointly estimate synchronous changes in population density
measured as numbers per area) and fish condition at fine
patial scales. The model is then used to predict abundance-
eighted average condition by averaging over local condi-

ion, weighting by the product of population density and sur-
ace area. This abundance-weighted average condition cor-
ects for biases that would arise when condition (weight-at-
ength) samples are not distributed proportional to population
ensities.
We estimate density-weighted fish condition for seven

roundfish species: yellowtail flounder (Pleuronectes ferrug-
nea), winter flounder (Pseudopleuronectes americanus), sil-
er hake (Merluccius bilinearis), spiny dogfish (Squalus acan-
hias), haddock (Melanogrammus aeglefinus), pollock (Pol-
achius virens), and Atlantic cod (Gadus morhua). Condi-
ion was estimated at 200 knots across the NES using fall
EFSC bottom-trawl survey data from 1992 to 2019. Because

roundfish distributions (and likely condition) are known to
ary with bathymetry, we included bottom depth (i.e. survey
tation depth) as a quadratic density covariate.

etection of temporal patterns in the time series

e fit a generalized additive model using the R package mgcv
Wood, 2011) to the time series of (1) EOF loadings for each
actor, (2) portfolio effects for each feeding guild, and (3) con-
itions for each species to quantify significance of any tem-
oral patterns, weighted by precision (reciprocal of standard
rror). A smooth term with a p-value > 0.05 was deemed non-
ignificant.

esults

cosystem stability: dominant modes of
ooplankton community dynamics

ominant patterns of residual variation in zooplankton com-
unities differed among EPUs. Spatio-temporal variation in

pring zooplankton community abundance in the MAB dis-
layed random year-to-year variation, but abundance on
eorges Bank and in the Gulf of Maine followed a lower-

requency cycle (see Figure 2; Figures A1 and A2 in Appendix
). The first spatio-temporal factor for Georges Bank after
CA rotation (proportion of explained variance = 79.3%) ap-
ears to be in a different zooplankton phase since 2010 (GAM
stimated a significant smooth term, p = 0.016), when cham
as lower density in the northern reaches, and tlong has higher
ensity in the northeastern corner of the Georges Bank. In the
ulf of Maine, the first factor (proportion of explained vari-

nce = 78.7%) spiked in 2007–2009, with positive phases as-
ociated with an increase in concentration of ctyp, cham, and
ith densities around the western Gulf of Maine and more
idespread densities of cfin and tlong (Figures 2 and 3). How-

ver, the change in EOF loadings over time was not significant
p > 0.05), likely due to the high variance in 2007–2009 es-
imated loadings (Figure 2). The second index (proportion of
xplained variance = 21.3%) shifts phase ∼2009, related to
idespread oceanic densities of tlong and concentrated densi-

ies of cfin and oith in the coastal southwestern Gulf of Maine
Figures 2 and 3). This shift was estimated to be significant
p = 0.005). The first factor of the mid-Atlantic Bight (pro-
ortion of explained variance = 56.7%) was associated in
ositive phases with high densities of ctyp and cham in the
outhern and particularly coastal reaches, tlong and oith in
oastal waters, and high densities and cfin concentrated to the
uter shelf (Figure A1 in Appendix 1).

ortfolio effects and stability of feeding guilds

patial portfolio effects for fish feeding guilds were relatively
arge (∼0.64, 0.86, and 0.88 for benthivores, piscivores, and
lanktivores, respectively), but each guild had distinct spatial
nd temporal dynamics (Figures 5, B1, B7, and B11 in Ap-
endix 1).
Portfolio effects among benthivores appear to be declin-

ng in the northeast U.S. shelf ecosystem across the time se-
ies, indicating that the spatio-temporal dynamics of distribu-
ions and densities of fish belonging to this guild are becom-
ng more synchronous and therefore less stable (GAM esti-
ated a significant smooth term, p < 0.001, Figure 4). Ar-

as of most change in benthivore portfolio effects (i.e. greater
rends) were concentrated to the outer reaches of Georges
ank, approaching the edge of the shelf (Figure 5). Examin-

ng single-species responses within the benthivore guild, black
ea bass and haddock have consistently distinct spatial pat-
erns, with black sea bass mainly found in the mid-Atlantic
ight and haddock, particularly in more recent years, only

ound on Georges Bank and in the Gulf of Maine (Figures
12 and B15 in Appendix 1). Haddock and black sea bass
xhibited similar spatio-temporal dynamics, with ranges con-
racting in those areas over the time series. Yellowtail floun-
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Figure 2. The first (proportion of variance explained = 78.7%) and second (proportion of variance explained = 21.3%) modes of spatio-temporal variation
in spring zooplankton community abundance in the Gulf of Maine. Error bars represent 2 × SE for the loadings of each factor.

Figure 3. Spatial map of the first (proportion of variance explained = 78.7%) and second (proportion of variance explained = 21.3%) modes of
spatio-temporal variation in the Gulf of Maine for zooplankton Calanus finmarchicus (cfin); Centropages typicus (ctyp); Centropages hamatus (cham);
Temora longicornus (tlong); and Oithona spp. (oith) after bilinear interpolation.
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der, while found in similar habitats as haddock, consistently
declined over the time series (Figure B13 in Appendix 1). Dis-
tribution of winter flounder shifted out of the mid-Atlantic
Bight and was mainly concentrated on Georges Bank, and ap-
eared to alternate between high and low abundance (Figure
14 in Appendix 1).
Portfolio effects among piscivores generally declined

hroughout the time series with a somewhat cyclical trend
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Figure 5. Trend in portfolio effects across time in the northeast U.S. shelf ecosystem for three feeding guilds from 1963 to 2019. Colour depicts the
slope parameter from a linear regression fit to local portfolio effects estimates over the time series calculated for each knot.

Figure 4. Time series of portfolio effects for each feeding guild. Portfolio effects range from 0 (no PE; species within guilds are more synchronous, low
stability) to 1 (strongest possible PE; species within guilds are more asynchronous, high stability). Species included in each guild are listed in Table 1.
Shading represents +/− 2 SE, as estimated using the delta method.
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GAM estimated a significant smooth term, p < 0.001)—
synchrony was high early in the time series, again in the late
990s, and has increased in recent years (Figure 4). Trend in
ortfolio effects was generally spatially consistent, though ar-
as in the GOM and southern MAB tended to increase while
he most decline came from the central MAB (Figure 5). The
argest portfolio effects were found mostly on Georges Bank
nd in the Gulf of Maine in the late 1970s to early 1980s
Figure 6). Examining single-species responses within the pis-
ivore guild, summer flounder, Atlantic cod, and spiny dogfish
xhibited similar spatial variation, particularly distinct from
inter skate, whose densities were concentrated almost ex-

lusively on Georges Bank (Appendix 1).
Planktivore portfolio effects rose to a peak ∼2000, and

teadily declined thereafter (GAM estimated a significant
mooth term, p < 0.001, Figure 4). The planktivore feeding
uild had discrete areas of positive trends in portfolio effects
cross the time series, such as on the central GB (Figure 5).
he planktivores included in this sample had relatively similar
abitat preferences, with the greatest difference in distribution
rom butterfish, which were generally absent from the Gulf of

aine later in the time series (Figure B9 in Appendix 1). But-
erfish also exhibited different spatio-temporal dynamics than
ther planktivores, broadly distributed along the mid-Atlantic
ight and Georges Bank early in the time series and later con-
entrating to a small coastal area in the GOM (Figure B9 in
ppendix 1).

ensity-dependent groundfish condition

ifferences among species in condition (weight per length)
as generally greater than temporal variability in condition

or a given species (Figure 7). Haddock and pollock experi-
nced relatively little consistent spatial variation in their con-
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Figure 6. Spatial variation in portfolio effects in the beginning (1980), middle (1998), and end (2018) of the time series for three feeding guilds:
benthivores (top), piscivores (middle), and planktivores (bottom). Portfolio effects range from 0 (no PE; species within guilds are more synchronous) to 1
(strongest possible PE; species within guilds are more asynchronous).
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dition (Figures C3 and C4 in Appendix 1), whereas Atlantic
cod and yellowtail flounder had hot spots of high variation
in condition that persisted over the course of the study (Fig-
ures 9, C1, and C5 in Appendix 1). Though condition was
relatively stable across the time series, a few species (had-
dock, silver hake, and winter flounder) appear to have expe-
rienced depressed average conditions over space in the early
2000s–2010. The species that experienced the greatest change
was yellowtail flounder, which experienced an 8.2% decline in
condition across the time series (Figure 8). We fit these con-
dition estimates to a GAM weighted by precision and found
this decline was statistically significant (p < 0.001, R pack-
age mgcv). Yellowtail condition was greatest in areas of either
high or very low density, which was concentrated to a discrete
coastal area at mid-latitudes (coastal Massachusetts) and on
the outer reaches of the shelf.

Discussion

Here, we demonstrate how recent advances in spatio-temporal
modelling can be used to develop dynamic ecological indica-
tors to reflect ecosystem processes at multiple levels and link-
ages evaluated in IEAs. Shifts in zooplankton dynamics, dis-
tinct trends in portfolio effects among fish feeding guilds, and
changes in groundfish condition that varied across the NES.
In each of these examples, disentangling the spatial compo-
ents highlights that ecosystem processes are highly variable
ver both space and time and could be used to improve living
arine resource management.
Zooplankton provide crucial linkages between trophic

evels in marine ecosystems, providing detritus to benthic
onsumers and a direct food source to juvenile fish and large
egafauna (Friedland et al., 2012; Tam et al., 2017). Here,
e found dominant modes of variation (Figures 2 and 3)

hat illustrate spatial patterns that persist for multiple years
hroughout the Gulf of Maine. Morse et al. (2017) found

similar temporal pattern, using constrained correspon-
ence analysis to identify important variables; however, the
nalysis was not able to decipher between local areas of
igh concentration. Zooplankton dynamics are important
n the NES, where recent declines in winter-spawning cod
n the NES have been associated with a reduced abun-
ance of the copepod Pseudocalanus spp. in spring, and
alanus finmarchicus are the preferred prey of the critically

ndangered North Atlantic right whale (Baumgartner and
ate, 2003). Changes in the spatial extent of Calanus fin-
archicus may be related to phenology and persistence of

ight whale habitat use (Meyer-Gutbrod et al., 2022) and
ould result in increased overlap between ocean-use sectors
ike offshore energy development or shipping. Therefore,
nderstanding zooplankton variability over space and time is

ntegral for effective ecosystem management. These patterns
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Figure 7. Time series of abundance-weighted condition α of all modelled species (left: haddock, pollock, winter flounder, yellowtail flounder; right:
Atlantic cod, silver hake, spiny dogfish), specifically showing α in units kg/mβ from the allometric relationship W = αLβ . An asterisk denotes statistical
significance, estimated using GAMs.
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f spatio-temporal variability may coincide with large-scale
ceanographic changes. Grüss et al. (2021) and Thorson et al.
2020) used confirmatory analysis to evaluate potential causal
inkages between EOF modes and physical factors. Further
nvestigation into physical covariates that may be driving
hanges in zooplankton abundance will provide useful insight
nto the spatio-temporal dynamics of lower-trophic-level
pecies and concomitant ecosystem responses that will likely
equire trade-offs between ocean-use sectors.

Portfolio effects (i.e. stability) of the benthivore feeding
uild in the NES marine ecosystem, averaged over space,
ave decreased monotonically since the onset of the NEFSC
ottom-trawl surveys, with the largest changes occurring in
he mid-Atlantic Bight (Figure 4). Planktivore portfolio effects
ave also been declining over the last two decades, mainly
n Georges Bank. These changes in feeding guild buffer-
ng influences ecosystem resilience to disturbance and cli-
ate variation and have important implications for EBFM.
sing a different subset of the NEFSC bottom-trawl survey
ata along with similar data from six other marine ecosys-
ems, Thorson et al. (2018) found that the spatial distribu-
ion of groundfish throughout the ecosystem was more in-
uential to buffering than the diversity of the groundfish at
ny location. However, forces driving stability of guild-level
iomass may vary depending on the strength of top-down
nd bottom-up processes. Importantly, fisheries rely on the
uffering granted by spatial heterogeneity in species biomass.
or example, the hundreds of spatially discrete populations
f Bristol Bay sockeye salmon buffers stock returns, reduc-
ng interannual variation by a factor of 2.2—if it were a sin-
le homogeneous population, fisheries closures would theo-
etically be ten times more frequent (Schindler et al., 2015).
cosystem and fishery stability are important fishery manage-
ent objectives for the NES (Gaichas et al., 2018), and cur-

ent indicators used for ecosystem reporting focus on a lack of
emporal trends across aggregate functional groups (NEFSC,
022). Evaluating feeding guild portfolio effects across space
nd time highlights that some areas might be less resilient to
xploitation.

Body condition of groundfish (but yellowtail flounder) was
enerally stable over time, and though spatiotemporal vari-
tion was present, variation among species was greater than
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Figure 8. Yellowtail flounder condition (top left) and numerical density (bottom left) across the northeastern U.S. shelf during years of high (1994;
density-weighted condition = 0.0071), medium (2004; density-weighted condition = 0.0067), and low (2017; density-weighted condition = 0.0065)
condition, extrapolated using bilinear interpolation. Right panel shows time series of yellow-tail flounder density-weighted condition (units kg/mβ from
the allometric relationship W = αLβ ). The shaded band represents ± 2 SE.
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variation within species. A few species (winter flounder, had-
dock, and silver hake) experienced depressed condition in the
period from 2000 to 2010 (Figure 7, p < 0.001), consistent
with NEFSC’s State of the Ecosystem Condition Trend Re-
ports (NEFSC, 2022). Only one species, yellowtail flounder,
showed substantial and statistically significant declines in av-
erage condition over the time series. These findings are es-
pecially relevant to socioeconomic users, such as commercial
or artisanal fisheries and subsistence users, given that large-
bodied fish often have higher value. How fishing excursions
concentrate with high-condition “hot spots” of their catch
could impact the efficiency of their efforts and variability in
their haul. We therefore recommend combining these results
with discrete-choice models of fishery locational choice to un-
derstand impacts on fishery catch and profit (e.g. Dépalle et
al., 2021).

Spatially explicit modelling allows researchers to provide
holistic ecosystem advice that does not average across pre-
defined zones or traditional boundaries. However, as many
of these management processes currently stand, spatial defini-
tions are an important consideration in ecosystem-based man-
agement. In our analyses, we used ecological production units
(EPU) and the NES as spatial definitions, as these are used for
reporting ecosystem information relative to fishery manage-
ment objectives to the New England and mid-Atlantic Fishery
Management Councils (see NEFSC, 2022; SOE), and indica-
tors can be developed using VAST according to a range of
spatial definitions. For example, ecological indicators can be
developed according to single-species stock areas to provide
context and improve the quality of advice (Skern-Mauritzen
et al., 2016). Spatio-temporal modelling can also be used to
develop multiple species and ecosystem indicators that can be
used to quantify the impact of other ocean-use sectors (e.g.
offshore energy) at a spatial scale relevant to decision-makers.

While not formally explored in this analysis, the rapid
changes of zooplankton in the Gulf of Maine coincide with
changes in the stability and condition of groundfish in the
egion. These observations may be attributed to changes in
ource waters in the Gulf of Maine (Gonçalves Neto et al.,
021). In 2019, the Gulf Stream was at its most northern po-
ition since 1993, which is associated with warmer ocean tem-
eratures on the northeast U.S. shelf, a higher proportion of
arm slope water in the Northeast Channel, and increased sea

urface heights along the U.S. east coast (Gonçalves Netoet
l., 2021). Concurrently, the Labrador slope water entering
he Gulf of Maine has been the lowest since 1978 (Gonçalves
eto et al., 2021), which provides cooler and less saline
ater at depth. The changing proportions of source waters
nd their properties affect the temperature, salinity, and nu-
rient inputs to the ecosystem, impacting zooplankton com-
unities through physiological responses or prey availability

Batchelder et al., 2013).
Our results offer a broader picture of ecological processes

nderlying indicators than nonspatial analyses commonly
sed in IEAs. Previous reporting on trophic structure and
uild stability using these data, aggregated biomass caught for
ach guild, suggested no major disturbances to guild stability
NEFSC, 2021, 2022). Diversity metrics used as indicators, in-
luding fishery fleet and catch diversity, were reported as sta-
le over time, with current values near the long-term average,
ut with increasing adult fish diversity in the Gulf of Maine.
uster and Link (2009) found remarkable stability of seven

eeding guilds in the NES ecosystem, though the proportion
f species represented changed dramatically over the study.
revious condition analyses averaging over space were gener-
lly in agreement with our results, finding relatively good con-
ition prior to 2000, followed by a period of generally poor
ondition from 2001 to 2010, followed by more variable con-
ition until 2019 (NEFSC, 2021). Our results provide species-
pecific spatial context to these reports. As for zooplankton
ynamics in the NES, previous analyses by Morse et al. (2017)
ighlight extensive shifts in zooplankton community dynam-
cs that varied by EPU, and our results zoom into those areas
o find hot spots of changing community structures.
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Future research could explore multiple avenues to improve
patio-temporal methods for use in IEA. Specifically:

(1) Quantitative network models: IEA often begins by
efining a conceptual model linking ecosystem components
nd services. These are often extended by formally specify-
ng a quantitative network model (QNM), representing causal
inkages within the conceptual model (Reum, 2015; Holsman
t al., 2017). The QNM, in turn, can be represented using a
ultivariate spatio-temporal model, wherein arrows (describ-

ng causal mechanisms) are estimated as parameters govern-
ng the covariance in spatio-temporal terms. By doing so, the
NM identifies a small number of parameters that must be

stimated to generate a sparse parameterization for covari-
nce in the spatio-temporal model. A similar “structural equa-
ion model” has been developed to estimate parameters in a
ulti-causal evolutionary context (Thorson et al., 2023), so
e are hopeful that developing a spatial QNM is a realistic

oal (in terms of reasonable precision and runtimes). Combin-
ng QNMs and spatio-temporal models would allow relation-
hips among ecosystem components to be explicitly specified
nd estimated.

(2) Subarea thresholds: Ongoing research seeks to define
hresholds (targets or limits) for comparison with value of in-
icators within an IEA. In some cases, these thresholds can
asily be developed for subareas, e.g. system-level yield (Link
nd Watson, 2019) and community size spectra (Daan et al.,
005) can be calculated easily for an entire region or subar-
as of interest. Spatio-temporal methods automatically allow
ndicators to be developed for subareas, so we see correspond-
ng value in developing thresholds for subareas, e.g. to under-
tand ecosystem status for individual states, tribes, or marine
anctuaries.

Here we provide a demonstration of the potential bene-
ts of spatio-temporal methods for IEA, and we hope this
tudy motivates additional research to evaluate performance
f spatio-temporal indicators. As climate change, anthro-
ogenic stressors, and natural fluctuations induce broad and
ocal-scale effects that vary in space and time, expanding and
mplementing spatio-temporal methods will allow us to most
ffectively monitor ecosystem components and evaluate trade-
ffs between ocean-use sectors.
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